To get the unique values of a column in pandas, the simplest way is to use the pandas unique() function.
df["variable"].unique()
You can also use the pandas unique() function in the following way:
pd.unique(series)
When working with data as a data science or data analyst, it’s sometimes important to be able to easily find the unique values of your dataset.
To get the unique values in a DataFrame, we can use the pandas unique() function.
The following code will get you the unique values of a series in Python:
df["variable"].unique()
If you want to get the number of unique values of an entire DataFrame in pandas, you can call pandas nunique() function.
Getting the Unique Values in a Column Using Pandas
Let’s say I have the following pandas DataFrame:
Name Weight_Change Month
0 Jim -16.20 1
1 Sally 12.81 1
2 Bob -20.45 1
3 Sue 15.35 1
4 Jill -12.43 1
5 Larry -18.52 1
6 Jim -6.10 2
7 Sally -2.81 2
8 Bob 12.45 2
9 Sue -0.32 2
10 Jill -1.23 2
11 Larry -8.52 2
12 Jim 5.20 3
13 Sally 12.81 3
14 Bob -2.45 3
15 Sue 5.35 3
16 Jill -2.43 3
17 Larry -1.85 3
We can call the unique() function on “Name” column to find the unique values for that column.
print(df["Name"].unique())
array(['Jim', 'Sally', 'Bob', 'Sue', 'Jill', 'Larry'], dtype=object)
We can also find the unique values in the “Name” column in the following way:
print(pd.unique(df["Name"]))
array(['Jim', 'Sally', 'Bob', 'Sue', 'Jill', 'Larry'], dtype=object)
You can see that this returns the same array as above.
Hopefully this article has been useful for you to find the number of unique values in a pandas DataFrame using Python.